
 

 

  
Abstract—The use of neural networks is popular in various 

building applications such as prediction of heating load, ventilation 
rate and indoor temperature. Significant is, that only few papers deal 
with indoor carbon dioxide (CO2) prediction which is a very good 
indicator of indoor air quality (IAQ). In this study, a data-driven 
modelling method based on multilayer perceptron network for indoor 
air carbon dioxide in an apartment building is developed. 
Temperature and humidity measurements are used as input variables 
to the network. Motivation for this study derives from the following 
issues. First, measuring carbon dioxide is expensive and sensors 
power consumptions is high and secondly, this leads to short 
operating times of battery-powered sensors. The results show that 
predicting CO2 concentration based on relative humidity and 
temperature measurements, is difficult. Therefore, more additional 
information is needed.  
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I. INTRODUCTION 

NDOOR Air Quality (IAQ) is a widely researched topic, 
because of its impacts on occupant’s health. Symptoms like 

e.g. eye dryness, running nose, headache and dizziness are 
experienced by occupants in a building. Sick building 
syndrome (SBS) is a combination of ailments and usually it is 
related to poor indoor air quality [1]. About half of the studies 
concerning non-residential and non-industrial buildings 
present that the risk of the SBS decreased substantially, if 
ventilation rates were increased, so that carbon dioxide CO2 
concentrations were reduced below 800 ppm [2], indicating 
better IAQ. As a whole, linking symptoms and IAQ of building 
occupants has been a very difficult task.   

The concentration of CO2 in indoor air is generally used as a 
surrogate for ventilation rate and concentration below 1000 
ppm is widely recommended. For the temperature, the Finish 
guideline value is 21°C and for the relative humidity it is 20-
60 % during the heating season [3]. 
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In addition, increased interest in energy efficiency is thought 

to affect negatively on indoor air quality. For instance, in 
Nature there are discussions about low-energy buildings and 
their relation to carbon emissions [4], as well as on the use of 
biological indicators for IAQ [5]. In Science, there are articles 
discussing about using and extending smart grids for energy 
efficiency [6], sustainability [7], and the relationships between 
healthiness and the environment [8]. 

Neural networks have been used in the prediction of indoor 
air quality e.g. feedforward backpropagation [9, 10], recurrent 
neural networks [11], fuzzy neuro systems [12] and model 
comparison [13]. There are also previous studies on 
forecasting outdoor air quality parameters using computational 
methods [14, 15, 16].  

This study aims to explore the applicability of multilayer 
perceptron (MLP) network to predict CO2 concentration in 
indoor air using measurements of relative humidity and 
temperature.   

II.   MATERIALS AND METHODS 

A. Data Collection 

The case study was conducted in an apartment building 
located in Kuopio, Finland, from May to October 2011. The 
building has been built in 1973. Indoor air quality data was 
collected continuously in 8 apartments from 4 bedrooms and 6 
living rooms, using an energy consumption and indoor air 
quality monitoring system [17]. Measurements were taken 
every 10 seconds. 

The collected IAQ data consisted of continuous 
measurements of temperature, relative humidity and CO2 
concentration in the study building. Measured variables and 
their ranges are presented in Table I.   
 

TABLE I 
DATA VARIABLES AND THEIR RANGE 

Variable Range 

Temperature [°C] 20.7-27.7 

Relative humidity [%] 15.9-62.8 

Carbon dioxide [ppm] 341.0-998.9 

 
The size of the collected data matrix was 1270916 rows, 31 
(including measurement time) variables in columns.  

B. Multilayer Perceptron (MLP) 

Multilayer perceptrons have been used successfully to solve 
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classification, regression and function approximation 
problems. Multilayer perceptron models are capable on 
modelling highly non-linear and complex problems, through 
the topology of the network, as presented in a simple form in 
Figure 1.   
 

   
Fig. 1 The structure of a multilayer perceptron with two hidden layers 

(modified from [18]) 
 
MLP networks consist of groups of interconnected nodes 

arranged in different layers, such as the input layer, hidden 
layers, and the output layer. The purpose of the input layer is 
to distribute inputs to the first hidden layer, where the 
mathematical processing task takes place. It summarizes the 
inputs based on predefined weights, processes them by a 
transfer function and transfers the result to the next layer, 
which is usually an output layer, as a linear combination.  
Finally, the output layer receives the information from the last 
hidden layer. The network outputs are calculated by a transfer 
function, which can be e.g. hyperbolic or sigmoid [18].   

C. Modelling Carbon Dioxide Concentration using MLP 

The data was processed and modelled under a Matlab-
software platform (Mathworks, Natick, MA, USA) according 
to Figure 2. At the beginning, the indoor air quality data was 
pre-processed. This means removing outliers, scaling the data 
and extracting the features using time window of 60 minutes. 
Extracted features are presented in Table II, where n is the 

total number of data samples, xi is the ith measurement, ix  is 

the mean of the measurements, and σ is the standard deviation, 
respectively. RH means relative humidity, T temperature and 
CO2 carbon dioxide. 
 

 
TABLE II 

DEFINITIONS OF THE EXTRACTED FEATURES FROM THE INDOOR AIR QUALITY 

DATA 

Features Definitions 
Variable 
number 
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The size of the final data matrix used was 78077 rows, 21 

variables in columns. Variable number 1 is measurement time, 
variable number 2 is the room ID and the rest of the variables 
are calculated features. No outliers or missing values were 
found. The data was scaled using variance scaling, defined as: 

 

,0,' ≠−= x
x

i
i

xx
x σ

σ
                (1) 

 

where x is the average of values in vector x and xσ  denotes 

the standard deviation of those values. Thus, variance scaling 
not only equalizes the effect of variables having a different 
range; it also reduces the effect of possible outliers in the data. 
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After pre-processing, the input variables of the MLP model 
were selected using correlation analysis. Selected varibles and 
their delayed values were used in training the MLP model. 
Delaying horizon was set to 1, 2, 3, 24, 25, 26, 168, 169 and 
170 hours.  The model parameters were selected based on 
experience and knowledge. The parameters used were 10 
hidden neurons in a hidden layer, the back-propagation 
learning was based on the Levenberg-Marquardt algorithm, the 
performance function was regularized mean squared error, 
hyperbolic sigmoid tangent was used for the hidden layers and 
linear for the output layer.  

MLP models room-specific performance indicators were 
estimated by repeating model training 5 times on each model, 
using hold-out cross-validation [19] (Figure 2). The used 
method is the simplest way to validate the goodness of a 
model. In this approach the data was divided into two sets; the 
training set and the validation set (hold-out set). The training 
data set consisted measurements of relative humidity and 
temperature 9 rooms and rest of the data was used as a 
validation data. 

 Performance of the models was based on four indicators, 
namely Index of Agreement (IA) [20], Coefficient of 
Determination (R2) [20], Root Mean Square Error (RMSE) 
and their statistics (mean ± S.D). Here Pi denotes a predicted 

element and Oi equals to observed element and O is the 
symbol for the average of observations. Index of Agreement is 
a measure which can be used to describe the goodness of a 
model: 
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Coefficient of Determination (R2) is defined as follows: 
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R2 is an index measuring the proportion of variation explained 
by the model. 
Root Mean Square Error (RMSE) is defined as follows: 
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RMSE is the estimated standard deviation of the errors. If the 
RMSE is small relative to the variation in the data, then the R2 
is near to 1 and the data are concentrated close to the fitted 
model. Both R2 and RMSE measure the goodness-of-fit of the 
model in their own way. 

III.  RESULTS 

Input variables of the MLP model input were selected using 
correlation analysis (Figure 3). Variables which correlated 
with mean CO2 were 5 (max RH), 6 (max T), 9 (Skewness 
RH), 14 (Average T), 16 (Median T), 18 (RMS T) and 20 
(Sum T). Negative linear relationship was reasonable (0.2 < R 
< 0.3) between mean CO2 and selected variables. 

 
 

Fig. 2 Main stages of the building and evaluating MLP model for predicting CO2 concentration 
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Fig. 3 Correlation map of extracted features (variables); Variable pairs are 

regrouped by similarity using k-means clustering 
 

Averages and standard deviations of model performance 
indicators are presented in Table III. The results indicated, that 
predicting CO2 concentration, based on calculated features 
utilizing on relative humidity and temperature measurements, 
is difficult.  However, it can be seen that the best model 
performances can be found when predicting living rooms CO2 
concentration.  

 
TABLE III 

STATISTICS (MEAN ± S.D.) OF THE MLP MODEL PERFORMANCE  
BD MEANS BEDROOM AND LR LIVING ROOM  

Model IA R 2 RMSE 

1 (BD) 0.68 ± 0.02 0.23 ± 0.02 83.14 ± 1.92 

2 (LR) 0.60 ± 0.12 0.22 ± 0.12 177.45 ± 102.04 

3 (BD) 0.66 ± 0.02 0.28 ± 0.05 175.45 ± 6.88 

4 (LR) 0.67 ± 0.03 0.24 ± 0.04 144.22 ± 4.33 

5 (LR) 0.76 ± 0.01 0.39 ± 0.02 122.85 ± 5.37 

6 (BD) 0.40 ± 0.01 0.00 ± 0.00 258.68 ± 13.97 

7 (LR) 0.54 ± 0.00 0.11 ± 0.00 193.89 ± 2.34 

8 (BD) 0.58 ± 0.03 0.27 ± 0.04 189.16 ± 10.15 

9 (LR) 0.70 ± 0.01 0.32 ± 0.02 122.26 ± 2.08 

10 (LR) 0.63 ± 0.01 0.31 ± 0.02 174.77 ± 2.74 

 

The performance was also visualized using the scatter plot 
(Figure 4) and time series plot (Figure 5) of the predicted 
versus observed mean CO2 concentrations.    

 

 
 

Fig. 4 Mean CO2 concentrations (observed versus predicted) obtained 
as a result of one of five MLP model 5 (LR). The dashed line gives 

the perfect fit and the solid line the fitting using least-squares 
 

In Figures 4 and 5 it can be seen that the prediction 
accuracy is reasonable in normal situations, but in exceptional 
circumstances the model cannot predict correctly.   

 

 
Fig. 5 Time series plot of observed versus predicted mean CO2 

concentration obtained as a result of one of five MLP model 5 (LR) 

IV.  DISCUSSION 

In this study we tested the MLP model for predicting mean 
CO2 concentrations in ten rooms. Overall, it seems that 
predicting CO2 is challenging, if it is only based on 
measurements on relative humidity and temperature. At first, 
we tried to model mean CO2 concentration, using means of 
relative humidity and temperature as model inputs, but results 
were poor (not presented here). Mean values of index of 
agreements were lower than 0.5.  Therefore we decided to 
calculate several features to attain further information 
concerning the dependences. After that the performance of 
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MLP models was tested using selected varibles (7). 
Performance indicators IA, R2 and RMSE (Table III) show 
that the goodness and fit of the model were reasonable on 
models 5 (LR) and 7 (LR). It seems that predicting living 
rooms CO2 concentration is easier probably due to small 
variations in CO2 concentration.    

Thus, it seems to be very difficult to build up a reliable and 
generalizable prediction model using only relative humidity 
and temperature as input variables. If the model generalization 
ability and prediction accuracy were good, it could be 
implemented as a soft sensor to make predictions of CO2 
concentration.         

V. CONCLUSION 

Today, buildings are more airtight and energy efficient, 
which can have an effect on indoor air quality. Therefore, the 
developing new affordable and reliable indoor air quality 
sensors (e.g. soft sensors) is important. The results presented 
in this paper show, that prediction of mean CO2 concentration 
is difficult, if it is based only on measurements of relative 
humidity and temperature. Further study is needed to improve 
the model accuracy.  

In the future, the study will be expanded to several 
apartment buildings and more additional information is needed 
as model input e.g. information on presence and electricity 
consumption, to improve the goodness of the model. 

ACKNOWLEDGMENT 

This research was done as a part of the Finnish AsKo-
project (Asuinrakennusten korjaus- ja täydennysrakentamisen 
vaikutukset asumisen energiatehokkuuteen ja sisäilman 
laatuun; The effects of renovation and complimentary 
construction on energy efficiency and indoor air quality). For 
financial support, the authors would like to thank the Ministry 
of the Environment.  

REFERENCES   

[1] K. Arnold, “Sick building syndrome solutions,” Professional Safety, 
vol. 46, pp. 43-44, 2001. 

[2] O. A. Seppänen, W. J. Fisk and M. J. Mendell, “Association of 
ventilation rates and CO2 concentrations with health and other responses 
in commercial and institutional buildings,” Indoor Air, vol. 9, pp. 226-
252, 1999. 

[3] Asumisterveysohje, Sosiaali- ja terveysministeriön oppaita, Sosiaali- ja 
terveysministeriö, Oy Edita Ab, Helsinki, 2003 (in Finnish). 

[4] D. Butler, “Architects of a Low-energy Future,” Nature, 452, pp. 520-
523, Apr. 2008. 

[5] R. Armstrong and N. Spiller, “Synthetic biology: Living quarters,” 
Nature, 467, pp. 916-918, Oct. 2010. 

[6] N. Gershenfeld, S. Samouhos, and B. Nordman: “Intelligent 
Infrastructure for energy efficiency,” Science, vol. 372, pp.1086-1088, 
Feb. 2010. 

[7] R. J. Jackson, “Environment Meets Health, Again,” Science, 315(5817), 
pp.1337, Mar. 2007. 

[8] J. P. Holdren, “Energy and Sustainability,” Science, 315(5813), pp. 737, 
Feb. 2007. 

[9] S. C. Sofuoglu, “Application of artificial neural networks to predict 
prevalence of building-related symptoms in office buildings,” Building 
and Environment, vol. 43, pp. 1121-1126, 2007. 

[10] H. Xie, F. Ma and Q. G. Bai, “Prediction of indoor air quality using 
artificial neural networks,” Fifth International Conference on Natural 
Computation (ICNC '09), vol. 2, pp. 414-418, 2009. 

[11] M. H. Kim, Y. S. Kim, J. J. Lim, J. T. Kim, S. W. Sung and C. K. Yoo, 
“Data-driven prediction model of indoor air quality in an underground 
space,” Korean Journal of Chemical Engineering, vol. 27, pp. 1675-
1680, 2010. 

[12] T. E. Alhanafy, F. Zaghlool and A. S. El Din Moustafa, “Neuro fuzzy 
modeling scheme for the prediction of air pollution,” Journal of 
American Science, vol.  6, pp. 605-616, 2010. 

[13] T. Lu and M. Viljanen, “Prediction of indoor temperature and relative 
humidity using neural network models: model comparison,” Neural 
Computing & Applications, vol.18, pp. 345-357, 2009 

[14] M. Kolehmainen, H. Martikainen, T. Hiltunen, and J. Ruuskanen,  
“Forecasting air quality parameters using hybrid neural network 
modelling,” Environmental Monitoring and Assessment, vol. 65, pp. 
277-286, 2000. 

[15] M. Kolehmainen, H. Martikainen and J. Ruuskanen,  
“Neural networks and periodic components used in air quality 
forecasting,” Atmospheric Environment, vol. 35, pp. 815-825, 2001. 

[16] H. Niska, T. Hiltunen, M. Kolehmainen and J. Ruuskanen,  
“ Hybrid models for forecasting air pollution episodes,”  
International Conference on Artificial Neural Networks and Genetic 
Algorithms (ICANNGA'03), University Technical Institute of Roanne, 
France April 23-25, 2003. 

[17] J-P. Skön, O. Kauhanen and M. Kolehmainen, ”Energy Consumption 
and Air Quality Monitoring System,” Proceedings of the 7th   
International Conference on Intelligent Sensors, Sensor Networks and 
Information Processing, pp. 163-167, Adelaide, Australia Dec. 6-9,  
2011. 

[18] S. Haykin, “Neural Networks–A Comprehensive Foundation,” 2nd ed., 
New Jersey: Prentice-Hall Inc., 1999. 

[19] R. Kohavi and F. Provost, “Glossary of terms,” Machine  Learning, vol. 
30, pp. 271–274, 1998. 

[20] C. J. Willmott, “Some Comments on the Evaluation of Model 
Performance,” Bulletin American Meteorological Society, vol. 63, 
pp.1309-1313, 1982. 

 
 
 

World Academy of Science, Engineering and Technology 61 2012

883




