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Modelling Indoor Ar Carbon Dioxide (CQ)
Concentration using Neural Network

J-P. Skon, M. Johansson, M. Raatikainen, K. Letvishd M. Kolehmainen

Abstract—The use of neural networks is popular in various In addition, increased interest in energy efficieiscthought

building applications such as prediction of heatioad, ventilation
rate and indoor temperature. Significant is, thay dew papers deal
with indoor carbon dioxide (C£ prediction which is a very good
indicator of indoor air quality (IAQ). In this styda data-driven
modelling method based on multilayer perceptromvasek for indoor
air carbon dioxide in an apartment building is deped.
Temperature and humidity measurements are usatpatvariables
to the network. Motivation for this study derivesrh the following
issues. First, measuring carbon dioxide is expensind sensors
power consumptions is high and secondly, this letasshort
operating times of battery-powered sensors. Thalteeshow that

to affect negatively on indoor air quality. For tasce, in
Nature there are discussions about low-energy ingtdand
their relation to carbon emissions [4], as welbasthe use of
biological indicators for IAQ [5]. In Science, tleeare articles
discussing about using and extending smart gridefergy
efficiency [6], sustainability [7], and the relatiships between
healthiness and the environment [8].
Neural networks have been used in the predictionddor

air quality e.g. feedforward backpropagation [9], 8current

predicting CQ concentration based on relative humidity and'@Ural networks [11], fuzzy neuro systems [12] anddel

temperature measurements, is difficult. Therefonere additional
information is needed.
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|. INTRODUCTION

NDOOR Air Quality (IAQ) is a widely researched topi
because of its impacts on occupant’s health. Symptke
e.g. eye dryness, running nose, headache and elzziare
experienced by occupants in a building. Sick bogdi
syndrome (SBS) is a combination of ailments andallisiit is
related to poor indoor air quality [1]. About half the studies
concerning non-residential and non-industrial bogdd
present that the risk of the SBS decreased sulzbanif
ventilation rates were increased, so that carbomidk CQ
concentrations were reduced below 800 ppm [2],catitig
better IAQ. As a whole, linking symptoms and IAQhuafilding

occupants has been a very difficult task.

The concentration of CQn indoor air is generally used asa The

surrogate for ventilation rate and concentratiofowel000
ppm is widely recommended. For the temperature Fthish
guideline value is 21°C and for the relative huryidi is 20-
60 % during the heating season [3].
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comparison [13]. There are also previous studies on
forecasting outdoor air quality parameters usinguatational
methods [14, 15, 16].

This study aims to explore the applicability of tilayer
perceptron (MLP) network to predict G@oncentration in
indoor air using measurements of relative humidiyd
temperature.

Il. MATERIALS AND METHODS

A.Data Collection

The case study was conducted in an apartment bgildi
located in Kuopio, Finland, from May to October 20TThe
building has been built in 1973. Indoor air qualitgta was
collected continuously in 8 apartments from 4 bedrs and 6
living rooms, using an energy consumption and imdaio
quality monitoring system [17]. Measurements wea&eh
every 10 seconds.
collected IAQ data consisted of continuous
measurements of temperature, relative humidity &@,
concentration in the study building. Measured \Ja#és and
their ranges are presented in Table I.

TABLE |
DATA VARIABLES AND THEIR RANGE
Variable Range
TemperatureC] 20.7-27.7
Relative humidity [%] 15.9-62.8
Carbon dioxide [ppm] 341.0-998.9

The size of the collected data matrix was 12709M@sy 31
(including measurement time) variables in columns.

B.Multilayer Perceptron (MLP)
Multilayer perceptrons have been used successfuléplve
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classification, regression and function approxiomati
problems. Multilayer perceptron models are capable

modelling highly non-linear and complex problemsiotigh

the topology of the network, as presented in a Enfigrm in

Figure 1.
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Fig. 1 The structure of a multilayer perceptronhviivo hidden layers
(modified from [18])

MLP networks consist of groups of interconnectedieso
arranged in different layers, such as the inpuedajhidden
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layers, and the output layer. The purpose of tpetitayer is
to distribute inputs to the first hidden layer, wdethe
mathematical processing task takes place. It suinemathe
inputs based on predefined weights, processes thgna
transfer function and transfers the result to tlstrayer,
which is usually an output layer, as a linear corabon.
Finally, the output layer receives the informatfoom the last
hidden layer. The network outputs are calculatea xansfer
function, which can be e.g. hyperbolic or sigmdi8][

C.Modelling Carbon Dioxide Concentration using MLP

The data was processed and modelled under a Matlal

software platform (Mathworks, Natick, MA, USA) acding
to Figure 2. At the beginning, the indoor air gtyallata was
pre-processed. This means removing outliers, spdfia data
and extracting the features using time window ofn@i@utes.
Extracted features are presented in Table Il, wimerg the

total number of data samples,is theith measurement; is

the mean of the measurements, ariglthe standard deviation,
respectively. RH means relative humidity, T tempe®e and
CO, carbon dioxide.

TABLE I
DEFINITIONS OF THE EXTRACTED FEATURES FROM THE INDG®AIR QUALITY
DATA
. Variable
Features Definitions
number
Minimum min,"; x; 3 (RH), 4 (T)
Maximum maxl; x: 5 (RH), 6 (T)
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The size of the final data matrix used was 780%vsr@21
variables in columns. Variable number 1 is measardgrtime,
variable number 2 is the room ID and the rest efwvthriables
are calculated features. No outliers or missingieslwere
found. The data was scaled using variance scaligifinped as:

X — X

)

o, 20,

X
X

wbﬁere Xis the average of values in vectoand O, denotes

the standard deviation of those values. Thus, negiascaling
not only equalizes the effect of variables havingifferent
range; it also reduces the effect of possible exgtlin the data.
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1) Pre-processing phase

2) Model building and evaluation on each room

Hold-out cross- Training MLP Performance
validation model indicators

Pre-processing
and scaling

Database

Fig. 2 Main stages of the building and evaluatingRvinodel for predicting C©concentration

After pre-processing, the input variables of theMMinodel ~Coefficient of Determination #is defined as follows:
were selected using correlation analysis. Selegéeithles and

their delayed values were used in training the MhBdel. ZN (P. _6)2
Delaying horizon was set to 1, 2, 3, 24, 25, 28,1869 and R* === T )
170 hours. The model parameters were selectedd baise Zizl(oi —O)

experience and knowledge. The parameters used W@re

hidden neurons in a hidden layer, the back-propawat R? js an index measuring the proportion of variatoplained
learning was based on the Levenberg-Marquardtihgorthe  y the model.

performance function was regularized mean squaredr,e Root Mean Square Error (RMSE) is defined as foltows
hyperbolic sigmoid tangent was used for the hiddgars and
linear for the output layer. 1

MLP models room-specific performance indicators ever rpmse :(iz_’“ (P _o)2j2 4)
estimated by repeating model training 5 times asheaodel, N ==
using hold-out cross-validation [19] (Figure 2). eTlused
method is the simplest way to validate the goodress RMSE is the estimated standard deviation of thersrif the
model. In this approach the data was divided i sets; the RMSE is small relative to the variation in the daten the R
training set and the validation set (hold-out s&te training is near to 1 and the data are concentrated closketditted
data set consisted measurements of relative hymatit model. Both R and RMSE measure the goodness-of-fit of the
temperature 9 rooms and rest of the data was used amodelin their own way.
validation data.

Performance of the models was based on four itafiga lll.  RESULTS
namely Index of Agreement (IA) [20], Coefficient of Input variables of the MLP model input were seldatsing
Determination (B [20], Root Mean Square Error (RMSE)correlation analysis (Figure 3). Variables whichretated
and their statistics (mean + S.D). Hé¥edenotes a predicted with mean CQ were 5 (max RH), 6 (max T), 9 (Skewness

element andO; equals to observed element a@is the RH). 14 (Average T), 16 (Median T), 18 (RMS T) a2d
symbol for the average of observations. Index ofe&gent is (Sum T). Negative linear relationship was reasang0l2 < R

a measure which can be used to describe the goodrfies < 0.3) between mean G@nd selected variables.
model:

A =1- NZiNﬂ(E‘ _O')Z - (2)
Zizlqpi _O‘+‘o‘ _O‘)z
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Fig. 3 Correlation map of extracted features (\@€s); Variable pairs are
regrouped by similarity using k-means clustering

Averages and standard deviations of model perfocaan

indicators are presented in Table Ill. The regultécated, that
predicting CQ concentration, based on calculated features
utilizing on relative humidity and temperature mgasnents,
is difficult. However, it can be seen that the tbe®del
performances can be found when predicting livingmme CQ
concentration.

TABLE Il
STATISTICS (MEAN * S.D.) OF THE MLP MODEL PERFORMANCE
BD MEANS BEDROOM AND LR LIVING ROOM

Model IA R? RMSE

1 (BD) 0.68 +0.02 0.23+0.02 83.14 +1.92
2 (LR) 0.60 £0.12 0.22+0.12  177.45+102.04
3 (BD) 0.66 +0.02 0.28 +0.05 175.45 + 6.88
4 (LR) 0.67 +0.03 0.24 +0.04 144.22 + 4.33
5 (LR) 0.76 £ 0.01 0.39 +0.02 122.85 + 5.37
6 (BD) 0.40 £ 0.01 0.00£0.00  258.68 +13.97
7 (LR) 0.54 +0.00 0.11 +0.00 193.89 £ 2.34
8 (BD) 0.58 +0.03 0.27 +0.04 189.16 + 10.15
9 (LR) 0.70 £0.01 0.32+0.02 122.26 +2.08
10 (LR) 0.63 £0.01 0.31+£0.02 174.77 +2.74

The performance was also visualized using the escptot
(Figure 4) and time series plot (Figure 5) of thedicted
versus observed mean €Encentrations.
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Fig. 4 Mean C@concentrations (observed versus predicted) oldaine
as a result of one of five MLP model 5 (LR). Thelded line gives
the perfect fit and the solid line the fitting ugileast-squares

In Figures 4 and 5 it can be seen that the predicti
accuracy is reasonable in normal situations, bexireptional
circumstances the model cannot predict correctly.

mip (IA: 0.77472 RMSE: 117.5259)
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Fig. 5 Time series plot of observed versus prediotean CQ
concentration obtained as a result of one of fitePNinodel 5 (LR)

IV. DISCUSSION

In this study we tested the MLP model for predigtmean
CO, concentrations in ten rooms. Overall, it seemst tha
predicting CQ is challenging, if it is only based on
measurements on relative humidity and temperatdirst,
we tried to model mean GQ@oncentration, using means of
relative humidity and temperature as model inplits, results
were poor (not presented here). Mean values ofxirmfe
agreements were lower than 0.5. Therefore we ddcid
calculate several features to attain further infamion
concerning the dependences. After that the perfocmaof
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MLP models was tested using selected varibles (710l H. Xie, F. Ma and Q. G. Bai, “Prediction of indoair quality using

Performance indicators IA, 2Rand RMSE (Table 1ll) show
that the goodness and fit of the model were reddenan
models 5 (LR) and 7 (LR). It seems that predictiiving

rooms CQ concentration is easier probably due to small

variations in CQ concentration.

Thus, it seems to be very difficult to build upediable and
generalizable prediction model using only relathuamidity
and temperature as input variables. If the modeég#ization
ability and prediction accuracy were good, it coube
implemented as a soft sensor to make prediction€©f
concentration.

V.CONCLUSION

Today, buildings are more airtight and energy &ffit,
which can have an effect on indoor air quality. fHfere, the
developing new affordable and reliable indoor airality
sensors (e.g. soft sensors) is important. The teepuésented
in this paper show, that prediction of mean,@0Oncentration
is difficult, if it is based only on measurements relative
humidity and temperature. Further study is needeichprove
the model accuracy.

In the future, the study will be expanded to selvera

apartment buildings and more additional informaf®needed
as model input e.g. information on presence andtréiy
consumption, to improve the goodness of the model.
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